Disease prevention with islet autoantigens.
نویسندگان
چکیده
[16]. Verge CF, Gianani R, Yu L, Pietropaolo M, Smith T, Jackson RA, et al. Late progression to diabetes and evidence for chronic β-cell autoimmunity in identical twins of patients with type I diabetes. Diabetes 1995;44(10):1176-9. Abstract[17]. Scott J. The spontaneously diabetic BB rat: sites of the defects leading to autoimmunity and diabetes mellitus. A review. Curr TopMicrobiol Immunol 1990;156:1-14. Abstract[18]. Greiner DL, Rossini AA, Mordes JP. Translating data from animal models into methods for preventing human autoimmunediabetes mellitus: caveat emptor and primum non nocere. Clin Immunol 2001;100(2):134-43. Abstract[19]. Thomas HE, Kay TW. Beta cell destruction in the development of autoimmune diabetes in the non-obese diabetic (NOD) mouse.Diabetes Metab Res Rev 2000;16(4):251-61. Abstract [20]. Atkinson MA, Leiter EH. The NOD mouse model of type 1 diabetes: as good as it gets? Nat Med 1999;5(6):601-4. Citation[21]. Komeda K, Noda M, Terao K, Kuzuya N, Kanazawa M, Kanazawa Y. Establishment of two substrains, diabetes-prone and non-diabetic, from Long-Evans Tokushima Lean (LETL) rats. Endocr J 1998;45(6):737-44. Abstract[22]. Yokoi N, Komeda K, Wang HY, Yano H, Kitada K, Saitoh Y, et al. Cblb is a major susceptibility gene for rat type 1 diabetesmellitus. Nat Genet 2002;31(4):391-4. Abstract[23]. Rajagopalan G, Kudva YC, Flavell RA, David CS. Accelerated diabetes in rat insulin promoter-tumor necrosis factor-alphatransgenic nonobese diabetic mice lacking major histocompatibility class II molecules. Diabetes 2003;52(2):342-7. Abstract[24]. Ohashi PS, Oehen S, Buerki K, Pircher H, Ohashi CT, Odermatt B, et al. Ablation of “tolerance” and induction of diabetes byvirus infection in viral antigen transgenic mice. Cell 1991;65:305-17. Abstract[25]. Moriyama H, Yokono K, Amano K, Nagata M, Hasegawa Y, Okamoto N, et al. Induction of tolerance in murine autoimmunediabetes by transient blockade of leukocyte function-associated antigen-1/intercellular adhesion molecule-1 pathway. J Immunol1996;157(8):3737-43. Abstract[26]. Coon B, An LL, Whitton JL, von Herrath MG. DNA immunization to prevent autoimmune diabetes. J Clin Invest1999;104(2):189-94. Abstract[27]. Hornum L, Romer J, Markholst H. The diabetes-prone BB rat carries a frameshift mutation in Ian4, a positional candidate of Iddm1. Diabetes 2002;51(6):1972-9. Abstract[28]. Ellerman KE, Like AA. Susceptibility to diabetes is widely distributed in normal class IIu haplotype rats. Diabetologia2000;43(7):890-8. Abstract[29]. Jackson R, Rassi N, Crump A, Haynes BF, Eisenbarth GS. The BB diabetic rat. Profound T-cell lymphocytopenia. Diabetes1981;30(10):887-9. Abstract[30]. Fujita T, Yui R, Kusumoto Y, Sherizawa Y, Makino S, Tochino Y. Lymphocytic insulitis in a “non-obese diabetic (NOD)” strainof mice: an immunohistochemical and electron microscope investigation. Biomed Res 1982;3:429-43.[31]. Thebault-Baumont K, Dubois-LaForgue D, Krief P, Briand JP, Halbout P, Vallon-Geoffroy K, et al. Acceleration of type 1diabetes mellitus in proinsulin 2-deficient NOD mice. J Clin Invest 2003;111(6):851-7. Abstract[32]. Moriyama H, Abiru N, Paronen J, Sikora K, Liu E, Miao D, et al. Evidence for a primary islet autoantigen (preproinsulin 1) for insulitis and diabetes in the NOD mouse. Proc Natl Acad Sci U S A 2003;100(18):10376-81. Abstract[33]. Wong S, Guerder S, Visintin I, Reich E-P, Swenson KE, Flavell RA, et al. Expression of the co-stimulator molecule B7–1 inpancreatic β-cells accelerates diabetes in the NOD mouse. Diabetes 1995;44:326-9. Abstract[34]. Harlan DM, Hengartner H, Huang ML, Kang YH, Abe R, Moreadith RW, et al. Mice expressing both B7–1 and viral glycoproteinon pancreatic beta cells along with glycoprotein-specific transgenic T cells develop diabetes due to a breakdown of T-lymphocyteunresponsiveness. Proc Natl Acad Sci USA 1994;91(8):3137-41. Abstract[35]. Sarvetnick N, Liggitt D, Pitts SL, Hansen SE, Stewart TA. Insulin-dependent diabetes mellitus induced in transgenic mice byectopic expression of class II MHC and interferon-gamma. Cell 1988;52(5):773-82. Abstract[36]. von Herrath MG, Wolfe T, Mohrle U, Coon B, Hughes A. Protection from type 1 diabetes in the face of high levels of activatedautoaggressive lymphocytes in a viral transgenic mouse model crossed to the SV129 strain. Diabetes 2001;50(12):2700-8. Abstract[37]. Pechhold K, Patterson NB, Blum C, Fleischacker CL, Boehm BO, Harlan DM. Low dose streptozotocin-induced diabetes in rat insulin promoter-mCD80-transgenic mice is T cell autoantigen-specific and CD28 dependent. J Immunol 2001;166(4):2531-9. Abstract[38]. Wen L, Wong FS, Tang J, Chen NY, Altieri M, David C, et al. In vivo evidence for the contribution of human histocompatibilityleukocyte antigen (HLA)-DQ molecules to the development of diabetes. J Exp Med 2000;191(1):97-104. Abstract[39]. Verdaguer J, Yoon J-W, Anderson B, Averill N, Utsugi T, Park B-J, et al. Acceleration of spontaneous diabetes inTCR-β-transgenic nonobese diabetic mice by β-cell cytotoxic CD8+T cells expressing identical endognous TCR-α chains. J Immunol1996;157:4726-35. Abstract[40]. Lieberman SM, Evans AM, Han B, Takaki T, Vinnitskaya Y, Caldwell JA, et al. Identification of the {beta} cell antigen targetedby a prevalent population of pathogenic CD8 + T cells in autoimmune diabetes. Proc Natl Acad Sci USA 2003;100(14):8384-8.[38]. Wen L, Wong FS, Tang J, Chen NY, Altieri M, David C, et al. In vivo evidence for the contribution of human histocompatibilityleukocyte antigen (HLA)-DQ molecules to the development of diabetes. J Exp Med 2000;191(1):97-104. Abstract[39]. Verdaguer J, Yoon J-W, Anderson B, Averill N, Utsugi T, Park B-J, et al. Acceleration of spontaneous diabetes inTCR-β-transgenic nonobese diabetic mice by β-cell cytotoxic CD8+T cells expressing identical endognous TCR-α chains. J Immunol1996;157:4726-35. Abstract[40]. Lieberman SM, Evans AM, Han B, Takaki T, Vinnitskaya Y, Caldwell JA, et al. Identification of the {beta} cell antigen targetedby a prevalent population of pathogenic CD8 + T cells in autoimmune diabetes. Proc Natl Acad Sci USA 2003;100(14):8384-8. Abstract[41]. Baud O, Goulet O, Canioni D, Le Deist F, Radford I, Rieu D, et al. Treatment of the immune dysregulation, polyendocrinopathy,[41]. Baud O, Goulet O, Canioni D, Le Deist F, Radford I, Rieu D, et al. Treatment of the immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) by allogeneic bone marrow transplantation. N Engl J Med 2001;344(23):1758-62. Citation[42]. Greeley SA, Katsumata M, Yu L, Eisenbarth GS, Moore DJ, Goodarzi H, et al. Elimination of maternally transmittedautoantibodies prevents diabetes in nonobese diabetic mice. Nat Med 2002;8(4):399-402. Abstract[43]. Daniel D, Gill RG, Schloot N, Wegmann D. Epitope specificity, cytokine production profile and diabetogenic activity ofinsulin-specific T cell clones isolated from NOD mice. Eur J Immunol 1995;25(4):1056-62. Abstract[44]. Chen W, Bergerot I, Elliott JF, Harrison LC, Abiru N, Eisenbarth GS, et al. Evidence that a peptide spanning the B-C junction ofproinsulin is an early autoantigen epitope in the pathogenesis of type 1 diabetes. J Immunol 2001;167(9):4926-35. Abstract[45]. Wong FS, Karttunen J, Dumont C, Wen L, Visintin I, Pilip IM, et al. Identification of an MHC class I-restricted autoantigen intype 1 diabetes by screening an organ-specific cDNA library. Nat Med 1999;5(9):1026-31. Abstract[46]. Hutton JC, Eisenbarth GS. A pancreatic {beta}-cell-specific homolog of glucose-6-phosphatase emerges as a major target of cell-mediated autoimmunity in diabetes. Proc Natl Acad Sci USA 2003;100:8626-8. Citation[47]. Trudeau JD, Kelly-Smith C, Verchere CB, Elliott JF, Dutz JP, Finegood DT, et al. Prediction of spontaneous autoimmune diabetes in NOD mice by quantification of autoreactive T cells in peripheral blood. J Clin Invest 2003;111(2):217-23. Abstract[48]. Eisenbarth SC, Piggott DA, Huleatt JW, Visintin I, Herrick CA, Bottomly K. Lipopolysaccharide-enhanced, toll-like receptor4-dependent T helper cell type 2 responses to inhaled antigen. J Exp Med 2002;196(12):1645-51. Abstract[49]. Abiru N, Eisenbarth GS. Autoantibodies and autoantigens in type 1 diabetes: role in pathogenesis, prediction and prevention. CanJ Diabetes Care 1999;23(1):59-65.[50]. Schenker M, Hummel M, Ferber K, Walter M, Keller E, Albert ED, et al. Early expression and high prevalence of isletautoantibodies for DR3/4 heterozygous and DR4/4 homozygous offspring of parents with Type I diabetes: the German BABYDIABstudy. Diabetologia 1999;42(6):671-7. Abstract[51]. Zimmet PZ, Tuomi T, Mackay IR, Rowley MJ, Knowles W, Cohen M, et al. Latent autoimmune diabetes mellitus in adults(LADA): the role of antibodies to glutamic acid decarboxylase in diagnosis and prediction of insulin dependency. Diabet Med1994;11(3):299-303. Abstract[52]. Ferreira M, Davies SL, Butler M, Scott D, Clark M, Kumar P. Endomysial antibody: is it the best screening test for coeliacdisease? Gut 1992;33:1633-7. Abstract[53]. Spitzenberger F, Pietropaolo S, Verkade P, Habermann B, Lacas-Gervais S, Mziaut H, et al. Islet cell autoantigen of 69 kDa is anarfaptin-related protein associated with the golgi complex of insulinoma INS-1 cells. J Biol Chem 2003;278(28):26166-73. Abstract[54]. Bieg S, Hanlon C, Hampe CS, Benjamin D, Mahoney CP. GAD65 and insulin B chain peptide (9–23) are not primary autoantigens in the type 1 diabetes syndrome of the BB rat. Autoimmunity 1999;31(1):15-24. Abstract[55]. Gottlieb PA, Handler ES, Appel MC, Greiner DL, Mordes JP, Rossini AA. Insulin treatment prevents diabetes mellitus but not thyroiditis in RT 6-depleted diabetes resistant BB/Wor rats. Diabetologia 1991;34(5):296-300. Abstract[56]. von Herrath MG, Dyrberg T, Oldstone MB. Oral insulin treatment suppresses virus-induced antigen-specific destruction of beta cells and prevents autoimmune diabetes in transgenic mice. J Clin Invest 1996;98(6):1324-31. Abstract[57]. Judkowski V, Pinilla C, Schroder K, Tucker L, Sarvetnick N, Wilson DB. Identification of MHC class II-restricted peptideligands, including a glutamic acid decarboxylase 65 sequence, that stimulate diabetogenic T cells from transgenic BDC2.5 nonobesediabetic mice. J Immunol 2001;166(2):908-17. Abstract[58]. Chaillous L, Lefevre H, Thivolet C, Boitard C, Lahlou N, Atlan-Gepner C, et al. Oral insulin administration and residual beta-cellfunction in recent-onset type 1 diabetes: a multicentre randomised controlled trial. Lancet 2000;356(9229):545-9. Abstract[59]. Bregenholt S, Wang M, Wolfe T, Hughes A, Baerentzen L, Dyrberg T, et al. The cholera toxin B subunit is a mucosal adjuvantfor oral tolerance induction in type 1 diabetes. Scand J Immunol 2003;57(5):432-8. Abstract[60]. Arakawa T, Yu J, Chong DK, Hough J, Engen PC, Langridge WH. A plant-based cholera toxin B subunit-insulin fusion proteinprotects against the development of autoimmune diabetes. Nat Biotechnol 1998;16(10):934-8. Abstract[61]. Maron R, Melican NS, Weiner HL. Regulatory Th2-type T cell lines against insulin and GAD peptides derived from orallyand nasally-treated NOD mice suppress diabetes. J Autoimmun 1999;12(4):251-8. Abstract[62]. Abiru N, Wegmann D, Kawasaki E, Gottlieb P, Simone E, Eisenbarth GS. Dual overlapping peptides recognized by insulin peptide B:9–23 reactive T cell receptor AV13S3 T cell clones of the NOD mouse. J Autoimmun 2000;14(3):231-7. Abstract[63]. Liu E, Abiru N, Moriyama H, Diao D, Eisenbarth GS. Induction of insulin autoantibodies and protection from diabetes withsubcutaneous insulin B:9-3 peptide without adjuvant. Ann N Y Acad Sci 2002;958:224-7. Abstract[64]. Alleva DG, Gaur A, Jin L, Wegmann D, Gottlieb PA, Pahuja A, et al. Immunological characterization and therapeutic activity ofan altered-peptide ligand, NBI-6024, based on the immunodominant type 1 diabetes autoantigen insulin B-chain (9–23) peptide.Diabetes 2002;51(7):2126-34. Abstract[65]. Moriyama H, Wen L, Abiru N, Liu E, Yu L, Miao D, et al. Induction and acceleration of insulitis/diabetes in mice with a viralmimic (polyinosinic-polycytidylic acid) and an insulin self-peptide. Proc Natl Acad Sci USA 2002;99(8):5539-44. Abstract[66]. Liu E, Moriyama H, Abiru N, Miao D, Yu L, Taylor RM, et al. Anti-peptide autoantibodies and fatal anaphylaxis in NOD mice inresponse to insulin self-peptides B:9–23 and B:13–23. J Clin Invest 2002;110(7):1021-7. Abstract[67]. Bot A, Smith D, Bot S, Hughes A, Wolfe T, Wang L, et al. Plasmid vaccination with insulin b chain prevents autoimmunediabetes in nonobese diabetic mice. J Immunol 2001;167(5):2950-5. Abstract[68]. Steptoe RJ, Ritchie JM, Harrison LC. Transfer of hematopoietic stem cells encoding autoantigen prevents autoimmune diabetes. J Clin Invest 2003;111(9):1357-63. Abstract[69]. Birk OS, Douek DC, Elias D, Takacs K, Dewchand H, Gur SL, et al. A role of Hsp60 in autoimmune diabetes: analysis in a transgenic model. Proc Natl Acad Sci USA 1996;93(3):1032-7. Abstract[70]. Quintana FJ, Rotem A, Carmi P, Cohen IR. Vaccination with empty plasmid DNA or CpG oligonucleotide inhibits diabetes innonobese diabetic mice: modulation of spontaneous 60-kDa heat shock protein autoimmunity. J Immunol 2000;165(11):6148-55. Abstract[71]. Quintana FJ, Carmi P, Cohen IR. DNA vaccination with heat shock protein 60 inhibits cyclophosphamide-accelerated diabetes. JImmunol 2002;169(10):6030-5. Abstract[71]. Quintana FJ, Carmi P, Cohen IR. DNA vaccination with heat shock protein 60 inhibits cyclophosphamide-accelerated diabetes. JImmunol 2002;169(10):6030-5. Abstract [72]. Bowman M, Atkinson MA. Heat shock protein therapy fails to prevent diabetes in NOD mice. Diabetologia 2002;45(9):1350-1. Citation[73]. Raz I, Elias D, Avron A, Tamir M, Metzger M, Cohen IR. Beta-cell function in new-onset type 1 diabetes and immunomodulationwith a heat-shock protein peptide (DiaPep277): a randomised, double-blind, phase II trial. Lancet 2001;358(9295):1749-53. Abstract[74]. Shah SC, Malone JI, Simpson NE. A randomized trial of intensive insulin therapy in newly diagnosed insulin-dependent diabetesmellitus. N Engl J Med 1989;320(9):550-4. Abstract[75]. Ablamunits V, Elias D, Reshef T, Cohen IR. Islet T cells secreting IFN-gamma in NOD mouse diabetes: arrest by p277 peptide treatment. J Autoimmun 1998;11(1):73-81. Abstract[76]. Allen HF, Klingensmith GJ, Jensen P, Simoes E, Hayward A, Chase HP. Effect of BCG vaccination on new-onset insulin-dependent diabetes mellitus: A randomized clinical study. Diabetes Care 1998;22(10):1703-7.[77]. Tisch R, Wang B, Serreze DV. Induction of glutamic acid decarboxylase 65-specific Th2 cells and suppression of autoimmunediabetes at late stages of disease is epitope dependent. J Immunol 1999;163(3):1178-87. Abstract[78]. Tisch R, Liblau RS, Yang X-D, Liblau P, McDevitt HO. Induction of GAD65-specific regulatory T-cells inhibits ongoingautoimmune diabetes in nonobese diabetic mice. Diabetes 1998;47:894-9. Abstract[79]. Alleva DG, Crowe PD, Jin L, Kwok WW, Ling N, Gottschalk M, et al. A disease-associated cellular immune response in type 1diabetics to an immunodominant epitope of insulin. J Clin Invest 2001;107(2):173-80. Abstract[80]. Abiru N, Maniatis AK, Yu L, Miao D, Moriyama H, Wegmann D, et al. Peptide and MHC specific breaking of humoral toleranceto native insulin with the B:9–23 peptide in diabetes prone and normal mice. Diabetes 2001;50:1274-81. Abstract[81]. Greenbaum CJ, Harrison LC. Guidelines for intervention trials in subjects with newly diagnosed type 1 diabetes. Diabetes 2003;52(5):1059-65. Citation [82]. The Diabetes Control and Complications Trial Research Group. Effect of intensive therapy on residual beta-cell function inpatients with type 1 diabetes in the diabetes control and complications trial. A randomized, controlled trial. Ann Intern Med 1998;128(7):517-23. Abstract[83]. Krischer JP, Cuthbertson DD, Yu L, Orban T, Maclaren N, Jackson R, et al. Screening strategies for the identification of multipleantibody-positive relatives of individuals with type 1 diabetes. J Clin Endocrinol Metab 2003;88(1):103-8. Full Text[84]. Keskinen P, Korhonen S, Kupila A, Veijola R, Erkkila S, Savolainen H, et al. First-phase insulin response in young healthychildren at genetic and immunological risk for Type I diabetes. Diabetologia 2002;45(12):1639-48. Abstract Copyright © 2004 Elsevier Inc. All rights reserved.
منابع مشابه
Humoral autoimmunity in type 1 diabetes: prediction, significance, and detection of distinct disease subtypes.
Type 1 diabetes mellitus (T1D) is an autoimmune disease encompassing the T-cell-mediated destruction of pancreatic β cells and the production of autoantibodies against islet proteins. In humoral autoimmunity in T1D, the detection of islet autoantibodies and the examination of their associations with genetic factors and cellular autoimmunity constitute major areas in both basic research and clin...
متن کاملPosttranslational modification of HLA-DQ binding islet autoantigens in type 1 diabetes.
Posttranslational modification (PTM) of islet autoantigens can cause lack of central tolerance in type 1 diabetes (T1D). Tissue transglutaminase (tTG), involved in PTM of gluten antigens in celiac disease, creates negatively charged peptides favored by T1D-predisposing HLA-DQ molecules, offering an attractive candidate modifying islet autoantigens in T1D. The highly predisposing HLA-DQ8cis/tran...
متن کاملAntigen targets of type 1 diabetes autoimmunity.
Type 1 diabetes is characterized by recognition of one or more β-cell proteins by the immune system. The list of target antigens in this disease is ever increasing and it is conceivable that additional islet autoantigens, possibly including pivotal β-cell targets, remain to be discovered. Many knowledge gaps remain with respect to the disorder's pathogenesis, including the cause of loss of tole...
متن کاملAntigen-based prediction and prevention of type 1 diabetes.
2. INTRODUCTION Type 1 (insulin dependent) diabetes develops as the result of a cumulative autoimmune-mediated destruction of the pancreatic beta cells mainly in genetically predisposed individuals. The disease becomes clinically manifest when 50-90% of the beta cells are destroyed (1) following a long prodromal period (months to years) during which autoimmune phenomena are often present, inclu...
متن کاملDb121214 237..247
Posttranslational modification (PTM) of islet autoantigens can cause lack of central tolerance in type 1 diabetes (T1D). Tissue transglutaminase (tTG), involved in PTM of gluten antigens in celiac disease, creates negatively charged peptides favored by T1D-predisposing HLA-DQ molecules, offering an attractive candidate modifying islet autoantigens in T1D. The highly predisposing HLA-DQ8cis/tran...
متن کاملHLA-DQ-regulated T-cell responses to islet cell autoantigens insulin and GAD65.
HLA-DQ is strongly associated with genetic predisposition to type 1 diabetes. It is assumed that HLA-DQ molecules exert their effects on the disease via the presentation of peptides from islet autoantigens to CD4(+) T-cells, but little information regarding HLA-DQ-restricted, islet antigen-specific, autoreactive T-cells is available. To investigate the role of HLA-DQ in the immune response to i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrinology and metabolism clinics of North America
دوره 33 1 شماره
صفحات -
تاریخ انتشار 2004